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Abstract. A novel technique that addresses the solution of the general nonlinear bilevel program-
ming problem to global optimality is presented. Global optimality is guaranteed for problems that
involve twice differentiable nonlinear functions as long as the linear independence constraint quali-
fication condition holds for the inner problem constraints. The approach is based on the relaxation of
the feasible region by convex underestimation, embedded in a branch and bound framework utilizing
the basic principles of the deterministic global optimization algorithm, αBB [2, 4, 5, 11]. Epsilon
global optimality in a finite number of iterations is theoretically guaranteed. Computational studies
on several literature problems are reported.
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1. Introduction

The bilevel programming problem, BLPP, is an optimization problem that is con-
strained by another optimization problem. This mathematical programming model
arises when two independent decision makers, ordered within a hierarchical struc-
ture, have conflicting objectives. The decision maker at the lower level has to
optimize her objective under the given parameters from the upper level decision
maker, who, in return, with complete information on the possible reactions of the
lower, selects the parameters so as to optimize her own objective. In this sense, the
BLPP can be perceived as a static Stackelberg game [58, 65] with two independent
decision makers. The decision maker with the upper level objective, F(x, y) takes
the lead, and chooses her decision vector x. The decision maker with lower level
objective, f (x, y), reacts accordingly by choosing her decision vector y to optim-
ize her objective, parameterized in x. Note that the upper level decision maker is
limited to influencing, rather than controlling, the lower level’s outcome.
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1.1. PROBLEM DEFINITION

The general formulation of the BLPP is as follows:

min
x

F(x, y) (1)

s.t.
G(x, y) � 0
H(x, y) = 0

min
y
f (x, y)

s.t.
g(x, y) � 0
h(x, y) = 0

x ∈ X ⊂ Rn1 , y ∈ Y ⊂ Rn2

where f, F : Rn1xRn2 → R, g = [g1, . . . , gJ ] : Rn1xRn2 → RJ , G =
[G1, . . . ,GJ ′ ] : Rn1xRn2 → RJ

′
, h = [h1, . . . , hI ] : Rn1xRn2 → RI, H =

[H1, . . . , HI ′ ] : Rn1xRn2 → RI
′
.

1.2. BACKGROUND

The BLPP model first appeared in a paper by Bracken and McGill [20], on the al-
location of resources and weapons to optimize offense and defense simultaneously.
However, Candler and Norton [23] have been the first to use the terms ‘bilevel’
or ‘multilevel’ while describing a development policy problem. Since then, the
BLPP model has been employed in many and diverse areas that require hierarchical
decision making. For example, centralized economic planning involves resource
distribution through government levels [25], agricultural credit distribution [52],
electric utility pricing and planning [38, 45] and tax-credit determination [16]
problems that are naturally formulated as BLPPs. In civil engineering, extensive
research has been conducted to solve the bilevel transportation network design
problem [18, 44, 67]. In chemical engineering, BLPP applications involve chemical
process design with equilibrium [26, 27, 36], plant design under uncertainty [39],
flexibility analysis [35] and process design with controllability issues [21] prob-
lems. For comprehensive literature reviews and applications, the reader is directed
to [43, 50, 51, 61].

Given that the BLPP applications are many and diverse, effective solution al-
gorithms are of critical importance. The linear BLPP has the favorable property
that the solution occurs at an extreme point of the feasible set, that can be exploited
by enumeration techniques [19, 24]. However, this condition does not hold for the
nonlinear BLPP.

The conventional solution approach to the nonlinear BLPP is to transform the
original two level problem into a single level one by replacing the lower level op-
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timization problem with the set of equations that define its Karush–Kuhn–Tucker,
KKT, optimality conditions. However, the KKT optimality conditions are neces-
sary and sufficient for defining the optimum of the inner level problem only un-
der convexity conditions and a first order constraint qualification. When the in-
ner problem constraints are nonconvex, the KKT conditions are only necessary.
Consequently, local or even suboptimal solutions may be obtained.

A further difficulty arises in locating the global optimum of the resulting single
level problem after the KKT transformation. The bilinear nature of complement-
arity conditions introduce nonconvexities even if the original problem is linear.
Furthermore, when the inner problem is nonlinear, the equations that define the
stationarity constraints are also nonconvex. Hence, even if the KKT conditions
are necessary and sufficient for the inner problem, the global optimality of the
transformed single level problem can not be guaranteed unless a global optimiza-
tion algorithm is introduced. These difficulties related with the KKT-type solution
approaches, which are the most efficient and widely used methods for the solution
of the BLPP, confine them to only local solutions when nonlinearities are involved.
On the other hand, many hierarchical systems typically involve nonlinear equa-
tions, and obtaining their global minimum may be of critical importance in decision
making. Such is the case in process design under thermodynamical equilibrium and
design under uncertainty problems. Therefore, it is extremely desirable to develop
a technique that can locate the global optimum of nonlinear bilevel programming
problems. However, to date, there have been relatively few studies on the global
optimization of general nonlinear bilevel optimization problems. Furthermore, it is
worth noting that there do not exist any rigorous approaches for bilevel nonlinear
optimization problems in the open literature.

We have developed a novel global optimization technique for solving bilevel
optimization problems that uses KKT optimality conditions, but can overcome
their limitations by a systematic and rigorous procedure. Global optimality is guar-
anteed for general nonlinear bilevel optimization problems that may involve twice
differentiable nonconvex nonlinear functions.

First, the KKT transformation will be described and the basic difficulties associ-
ated with obtaining a global solution using the current methods will be discussed.
Next, the key properties of our proposed method for the solution of the general
bilevel nonlinear optimization problems will be presented and the corresponding
algorithmic procedure will be outlined. Finally, computational studies on several
examples from the literature will be presented.

2. Theory

2.1. SET DEFINITIONS AND PROPERTIES

There are several set definitions related to BLPP solution approaches. The set

� = {(x, y) : G(x, y) � 0,H(x, y) = 0, g(x, y) � 0,h(x, y) = 0}
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defines the relaxed BLPP feasible set. If there are no (x, y) ∈ �, then the BLPP is
infeasible.

The feasible set of the inner problem is parametric in terms of the decision
variables x of the outer problem, defined for every x ∈ X as:

�(x) = {y : y ∈ Y,h(x, y) = 0, g(x, y) � 0}
Thus, for every x ∈ X, the set:

RR(x) = {y ∈ argminf (x, y) : y ∈ �(x)}
defines the inner problems rational reaction set. Hence, the BLPP feasible set (the
inducable region) is defined as:

IR = {(x, y) : (x, y) ∈ �, y ∈ RR(x)}.
The solution of even the linear BLPP is an NP-hard problem [13, 17, 41] and

furthermore, the BLPP is strongly NP-hard [37]. For studies on complexity issues
regarding BLPPs, see [51, 53].

Note that at certain outer parameter values, the inner problem may have multiple
optima, while the outer problem will be optimum only at specific inner variable
values. When this situation arises, the optimum of the BLPP is achieved only if
the inner optimizer cooperates with the outer optimizer. The formulation of the
BLPP adopted here ensures that the outer optimizer selects specific inner variables
to minimize. Most BLPP approaches use this tie-cooperative formulation. It is
important to point out that methods for the nonlinear BLPP assume that second
order sufficiency conditions hold, hence the BLLPs solved have isolated unique
inner level optima [26]. For books that include extensive studies on the BLPP, the
reader is directed to [46, 51, 57].

2.2. KKT OPTIMALITY CONDITIONS

The KKT optimality conditions are equivalent to the inner optimization problem
assuming: f , h, and g are smooth, f and g are convex, h is linear in y at fixed
x for every x ∈ X, and one of the first-order constraint qualifications such as
linear independence, Slater, Kuhn–Tucker or weak reverse convex condition holds
in terms of x at a feasible point y∗. Then, a necessary and sufficient condition for
y∗ to be an optimal solution to the inner level problem is that there exists (λ∗, µ∗)
that satisfies:

hi(x, y∗) = 0 i ∈ I, (KKT)

∂f (x, y∗)
∂y∗ +

J∑

j=1

λ∗
j

∂gj

∂y∗ +
I∑

i=1

µ∗
i

∂hi

∂y∗ = 0

gj (x, y∗)+ s∗j = 0, j ∈ J,
λ∗
j s

∗
j = 0 j ∈ J

λ∗
j , s

∗
j � 0, j ∈ J,
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where λ∗, µ∗are, respectively, the KKT multiplier vectors of the inequality and
equality constraints. It follows that a necessary condition for (x∗, y∗, λ∗, µ∗) to be
an optimal solution of the BLPP, (y∗, λ∗, µ∗) must satisfy the above conditions at
fixed x = x∗. From this line of reasoning, the bilevel programming problem is
transformed into a single level problem of the form:

min
x y

F(x, y) (2)

s.t.
G(x, y) � 0
H(x, y) � 0
hi(x, y) = 0 i ∈ I,
∂f (x, y)
∂y

+
J∑

j=1

λj
∂gj

∂y
+

I∑

i=1

µi
∂hi

∂y
= 0 (s)

gj (x, y)+ sj = 0, j ∈ J,
λj sj = 0, j ∈ J, (cs)
λj , sj � 0, j ∈ J, (cs)
x ∈ X, y ∈ Y.

Note that problem (2) is nonconvex due to the stationarity conditions (s) and the
complementarity conditions (cs). Hence, the resulting single level formulation is
nonlinear and nonconvex even if the original bilevel problem is linear due to the
complementarity conditions. For the linear case, the complementarity conditions
are the only nonlinearities in the single level transformed problem. Different ap-
proaches to tackle this difficulty include penalty function [10, 66], branch and
bound [14, 15], global optimization [64] and reverse convex programming [59, 60]
methods.

For the convex form of (1) solution methods in the literature generally require
the following conditions at fixed x [26, 30, 31]: (a) f , g, h are continuous and
twice differentiable functions in (x, y); (b) the linear independence condition holds
at y ∈ Y , such that the gradients of the inner problem equality and active inequality
constraints, ∇xgj (x, y) ∀j ∈ JA, ∇xhi(x, y) ∀i ∈ I , are independent; (c) strict
complementarity condition holds at y ∈ Y ; and (d) the second order sufficiency
condition holds at y ∈ Y .

Under the assumptions (a)–(d) on the functions in (1), the inducible region, IR,
is continuous [57]. Assumptions (b) and (d) assure that the global optimum is also
unique. Furthermore, the KKT optimality conditions are necessary and sufficient
for locating the global optimum of the inner optimization problem when convex.
However, the complementarity and the stationarity conditions introduce noncon-
vexities. Shimizu et al. (1997) suggest handling the complementarity conditions
by an implicit enumeration such as in [15]. Still, the stationarity conditions may be
highly nonlinear. Branch and bound [12, 28], descent [62] and global optimization
[64] methods have been developed for the solution of the linear-quadratic BLPP.
In all these methods, additional requirements for convex F and G, quadratic f ,



6 Z.H. GÜMÜŞ AND C.A. FLOUDAS

and affine h and g are assumed such that the inner problem constraints form a
convex polyhedron. A difference of convex functions programming based global
optimization approach is presented for restricted types of problems with quadratic
inner objective functions in [9].

For problems that involve convex F, f, G, g and linear H,h, existing ap-
proaches, namely, descent [55] penalty function [6, 40, 49], and global optimiz-
ation [8] proposed in the literature still assume that (a)–(d) hold, as well as the
approaches for the solution of the general BLPP. However, for the general nonlinear
case, the convexity assumption of the inner problem is usually relaxed to include
nonconvex cases as long as KKT necessary conditions are met. Optimization meth-
ods developed for the general nonlinear case, include the relaxation and active set
strategy techniques [26]. Note that the KKT conditions can no longer guarantee
global optimality of the inner problem for fixed x. This means that, even if the
transformed problem is solved by a global optimization approach, global optimality
of the transformed single level problem can not be guaranteed. Hence, methods for
the solution of the general nonlinear BLPP that are based on the KKT optimality
conditions are bound to be local. The following section presents the main concepts
that we have used in order to overcome the limitations of KKT-type methods.

3. Conceptual Framework

To assure that KKT optimality conditions are both necessary and sufficient for
obtaining the global optimum of the inner problem, the functions f and g must be
convex and h must be linear at fixed x.

Condition 1: If for fixed x, assumptions (a)–(d) hold, f and g are convex and h
are linear in y, then the KKT optimality conditions are necessary and sufficient for
obtaining the global optimum of the inner problem [26, 32].

If condition 1 does not hold, then KKT conditions are only necessary. By repla-
cing the nonconvex inner problem with its KKT optimality conditions, and solving
the resulting single level problem to local optimality, an upper bound on the global
optimum of the BLPP is obtained, provided that the linear independence condition
holds.

3.1. UNDERESTIMATION FOR THE BLPP

A lower bound to the global optimum of the BLPP can be found as follows: the
feasible region, � can be enlarged in such a way that the infeasible points within
the convex hull are included into the feasible set. This can be done by utilizing the
basic principles of the deterministic global optimization algorithm (see [32]), αBB
[2, 4, 5, 11] to underestimate the nonconvex functions over the (x, y) domain.

For the nonlinear functions, valid underestimators are generated by the de-
composition of each nonlinear function into a sum of terms belonging to one of
several categories: linear, bilinear, trilinear, fractional, fractional trilinear, convex,
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univariate concave, product of univariate concave or general nonconvex,

f (y) = lt (y)+ ct (y)+
bt∑

i=1

biyBi,2yBi,2 +
t t∑

i=1

t1yTi,1yTi,2yTi,3

+
f t∑

i=1

fi
yfi,1

yfi,2
+

f tt∑

i=1

yf ti,1yf ti,2

yf ti,3
+

ut∑

i=1

uti(yi)+
nt∑

i=1

nti(y), at x ∈ X.

After the terms are identified, a different convex underestimator is constructed for
each class of term, and a lower bounding function is obtained.

A Bilinear Term (y1y2) with y1 ∈ [yL1 , yU1 ] and y2 ∈ [yL2 , yU2 ] can be
underestimated by introducing a variable ω that replaces every occurrence of (y1y2)

in the problem and satisfies the relationship [2, 7]:

yL1 y2 + yL2 y1 − yL1 y
L
2 − ω � 0

yU1 y2 + yU2 y1 − yU1 y
U
2 − ω � 0

−yU1 y2 − yL2 y1 + yU1 y
L
2 + ω � 0

−yL1 y2 − yU2 y1 + yL1 y
U
2 + ω � 0,

which defines its convex envelope.
A Univariate Concave Term, ut(y) over [yL, yU ], is underestimated by a linear

function of y [2]:

ut(yL) + ut(yU ) − ut(yL)

yU − yL
(y − yL).

Products of Univariate Terms (f (y1)g(y2)) are underestimated using a gener-
alization of the method for bilinear terms (see [32, 48]). Trilinear (y1y2y3), Frac-
tional ( y1

y2
), and Fractional Trilinear Terms are replaced by new variables subject

to sets of constraints in a way similar to the underestimation of bilinear terms (see
[32, 48]).

All other General Nonconvex Terms for which customized underestimators do
not exist are underestimated as proposed in [32]. A function f (y) is underestimated
in y ∈ [yL, yU ] by the function L(y) defined as:

L(y) = f (y)+
n∑

i=1

αi(y
L
i − yi)(y

U
i − yi),

where αi’s are positive scalars such thatHf (y)+2diag(αi ) is positive semi-definite
∀ y ∈ [yL, yU ], where Hf (y) is the Hessian matrix of the general nonconvex term
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[32]. The corresponding underestimating function L(y) is convex:

L(y) = lt (y)+ ct (y)+
bt∑

i=1

biωBi

+
t t∑

i=1

tiωTi +
f t∑

i=1

fiωFi +
f tt∑

i=1

f tiωFTi

+
ut∑

i=1

(uti(y
L
i )+ uti(y

U
i )− uti(y

L
i )

yUi − yLi
(y − yLi ))

+
nt∑

i=1

(nti(y)+
n∑

j=1

αij (y
L
j − yj )(x

U
j − xj ))

where ω includes ωBi , ωTi , ωFi , and ωFTi variables. See [32] for rigorous calcula-
tion methods of the α’s.

3.1.1. Equality Constraints of the Inner Problem

As described in the previous section, the equality constraints of the inner problem
must be linear for the KKT conditions to be necessary and sufficient. The bilinear,
trilinear, fractional and fractional trilinear terms are replaced by new variables
that are defined by the introduction of additional convex inequality constraints.
Thus, if the equality constraint involves only these classes of terms, the resulting
problem is linear. If this is not the case, and convex, univariate concave, or general
nonconvex terms exist, the constraint is simply eliminated by a transformation into
two inequality constraints:

h(x, y) � 0

−h(x, y) � 0,

which are added to the set of inequality constraints. The resulting inner problem
includes the set of linear h and nonconvex f and g. Note that now g also includes
the nonlinear h that are written as two inequality constraints.

3.1.2. Inequality Constraints of the Inner Problem

Based on the underestimation of every term, a convex underestimator for any given
twice-differentiable function can be obtained through the decomposition approach
(See Fig.1). Let f c, gc denote the convexified f and g, respectively. Then, assum-
ing the linear independence condition holds for the set of constraints at y∗, there
exists (λ∗, µ∗) such that the inner problem can be replaced with its equivalent KKT
optimality conditions that are both necessary and sufficient for the convexified
problem. In other words, for fixed x, y∗ is the global optima of the inner convexified
problem.
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Figure 1. Convex underestimation.

After the KKT transformation of the convexified inner problem, the resulting
single level problem is still nonlinear and nonconvex due to the complementarity
(cs) and stationarity (s) conditions, and nonconvexities in G, H, F. The comple-
mentarity conditions are transformed into a set of MI(N)LP equations as described
below. The resulting MI(N)LP problem is solved to global optimality by using one
of the deterministic global optimization algorithms SMIN-αBB or GMIN-αBB
[1, 3] as described below. The solution is a lower bound on the original BLPP
minimum.

3.2. LINEAR INDEPENDENCE

Note that in order to replace the convexified inner problem with its equivalent
KKT optimality conditions, a first order constraint qualification such as the linear
independence condition of the inner problem constraints at the optima must be
satisfied. Otherwise, the transformed single level problem may be infeasible or it
can not be guaranteed that it is a lower bound. A simple linear independence check
can be made by testing whether the best (x∗, y∗) values obtained from the solution
of the original nonconvex upper bounding problem result in linearly independent
active constraints in the convexified problem.

3.3. COMPLEMENTARITY CONDITIONS – ACTIVE SETS

The complementarity condition constraints are one of the major difficulties in
solving the transformed single level problem. They involve discrete decisions on
the choice of the set of inner problem active constraints. The active set changes
when at least one inequality function and its multiplier are equal to zero. With the
change in the active set of constraints, the feasible space of the inner problem,
at fixed x, also changes. Furthermore, the overall feasible space changes, as it is
composed of different regions that correspond to different active sets. To overcome
this difficulty, the ideas of active set strategy [35] can be employed. In this case a
binary variable, Yj , is introduced associated with each inequality constraint, j ∈ J ,
depending whether it is active or inactive. Hence, the complementarity conditions
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can be reformulated as follows:

λcj − U Yj � 0 j ∈ J,
scj − U (1 − Yj) � 0 j ∈ J,
λcj , s

c
j � 0, j ∈ J

x ∈ X, y ∈ Y, Yj ∈ {0, 1},
where U is an upper bound for the slack variables, scj . This way, the inner problem
feasible regions belonging to different active sets can be visited simultaneously as
the outer problem decision vector x changes.

3.4. GLOBAL OPTIMIZATION OF NONLINEAR MIXED INTEGER PROBLEMS

The Special structure Mixed Integer Nonlinear αBB, SMIN-αBB [1, 3] algorithm
is a deterministic global optimization method based on a branch-and-bound frame-
work. Epsilon convergence is guaranteed for convergence to the global minimum
of problems that involve separable MINLP functions that are twice-differentiable
in continuous variables. A valid upper bound on the global solution is obtained by
solving the nonconvex MINLP to local optimality. A lower bound is determined
by solving a valid convex MINLP underestimation of the original problem. Con-
vergence is obtained by the refinement of the feasible space into smaller regions in
which convex underestimators are generated [1, 3]. The General structure Mixed
Integer Nonlinear αBB, GMIN-αBB [1, 3] algorithm, on the other hand, is also
based on a branch and bound framework, but is further applicable to problems
without the restriction of the separability of the integer variables.

3.5. BRANCHING AND BOUNDING

After upper and lower bounds on the original BLPP problem are obtained, the ini-
tial region of (x, y) is partitioned into smaller regions, in the following way: Tighter
lower bounds to the problem can be obtained by dividing the initial feasible region
into two subregions by using one of the branching rules that are developed within
the deterministic global optimization algorithm, αBB [2, 4, 5, 11]. For example, the
initial feasible region, as determined by the variable bounds, can be subdivided into
two subregions by halving along the longest side (bisection). After branching, min-
imization is performed in each subregion. The smallest minimum for all subregions
of the original feasible region is the overall lower bound. At the next iteration, only
the subrectangle responsible for the overall minimum is further bisected. Hence, a
nondecreasing sequence of lower bounds is produced. A non-increasing sequence
of upper bounds is created by locally solving the original nonconvex bilevel prob-
lem in each subregion, where the upper bound is the minimum of all upper bounds
calculated in previous iterations. The upper and lower bounds bracket the global
minimum. The branch and bound framework also includes a fathoming step, where
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any subregion with a lower bound higher than the current upper bound is removed
from further consideration.

The steps of the proposed global optimization framework for the nonlinear
bilevel optimization problem are presented in the following section.

4. Global Optimization Algorithm

Step 1: Set the lower bound, zLO = −∞, upper bound, zUP = ∞, iteration
counter k = 1 and select a convergence tolerance ε.

Step 2: Substitute the original inner optimization problem:

min
y
f (x, y)

s.t.

h(x, y) = 0

g(x, y) � 0,

with its KKT optimality conditions, (KKT), employ the active set
strategy for the complementarity conditions of problem (2), and con-
struct the following single stage MI(N)LP optimization problem:

z = min
x y

F(x, y)

s.t.

G(x, y) � 0

H(x, y) = 0

hi(x, y) = 0 i ∈ I,
∂f (x, y)
∂y

+
J∑

j=1

λj
∂gj (x, y)
∂y

+
I∑

i=1

µi
∂hi(x, y)
∂y

= 0,

gj (x, y)+ sj � 0 j ∈ J,
− gj (x, y)− sj � 0 j ∈ J,
λj − U Yj � 0 j ∈ J,
sj − U (1 − Yj) � 0 j ∈ J,
λj , sj � 0, j ∈ J,
x ∈ x, y ∈ Y, y ∈ {0, 1}.

Step 3: Solve the resulting problem by using a local MINLP optimizer, such
as MINOPT [56] or DICOPT [63], which will yield the upper bound,
zUP .

Step 4: Transform the nonlinear equality constraints h(x, y) into two inequal-
ity constraints h(x, y) � 0 and −h(x, y) � 0. The transformed con-
straints are now in the set g(x, y). The remaining equality constraints
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are linear. Denote them as hl(x, y). Then, develop convex underestim-
ators of the nonlinear terms in the functions g(x, y) and f (x, y), using
the basic principles of the deterministic global optimization algorithm,
αBB [2, 4, 5, 11]. Denote the underestimated functions as f c(x, y),
gc(x, y).

Step 5: Establish tight upper and lower bounds on inner variables that parti-
cipate in nonconvex terms that are underestimated, by solving:

yLn /y
U
n = min

x,y
yn/− yn

hi(x, y) = 0, i = 1, . . . , I

gj (x, y) � 0, j = 1, . . . , J,

for n = 1, . . . , N . and add the simple bounds thus obtained to the set
of constraints [47].

Step 6: Substitute the KKT optimality conditions that are necessary and suf-
ficient for the solution of the convexified problem:

z = min
x y

F(x, y)

s.t.

G(x, y) � 0

H(x, y) = 0

hli(x, y) = 0 i ∈ I,
∂f c(x, y)
∂y

+
J∑

j=1

λcj
∂gcj (x, y)

∂y
+

I∑

i=1

µci
∂hli(x, y)
∂y

� 0,

− ∂f c(x, y)
∂y

−
J∑

j=1

λcj
∂gcj (x, y)

∂y
−

I∑

i=1

µci
∂hli(x, y)
∂y

� 0,

gcj (x, y)+ scj � 0 j ∈ J,
− gj (x, y)− scj � 0 j ∈ J,
λcj s

c
j = 0 j ∈ J,

λcj , s
c
j � 0, j ∈ J,

x ∈ x, y ∈ Y.
Notice that when the slack variable scj is added to the convexified in-
equality constraint, gcj , an equality constraint is obtained of the form:
gcj +scj = 0, which is nonconvex when gcj is nonlinear. When applying
a global optimization algorithm to the above single level optimization
problem, this constraint is rewritten as two inequality constraints, of
the form: gcj + scj � 0 and −gcj − scj � 0. Since the term gcj is convex,
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the term −gcj in the additional inequality constraint is inherently con-
cave, and thus needs to be underestimated. However, underestimation
of this term will result in an overestimation of the term gcj . Thus, in
order to obtain a valid lower bound to the original BLPP, the set of
equations should be of the form: gcj + scj � 0, and −gj − scj � 0,
resulting in the correct underestimation of the negative of the original
term, −gj .

Step 7: Convert the complementarity conditions into an equivalent set of con-
straints involving discrete variables [35] as described in the previous
section. The resulting MI(N)LP problem becomes:

z = min
x y

F(x, y)

s.t.

G(x, y) � 0

H(x, y) = 0

hli(x, y) = 0 i ∈ I,
∂f c(x, y)
∂y

+
J∑

j=1

λcj
∂gcj (x, y)

∂y
+

I∑

i=1

µci
∂hli(x, y)
∂y

� 0,

− ∂f c(x, y)
∂y

−
J∑

j=1

λcj
∂gcj (x, y)

∂y
−

I∑

i=1

µci
∂hli(x, y)
∂y

� 0,

gcj (x, y)+ scj � 0 j ∈ J,
− gj (x, y)− scj � 0 j ∈ J,
λcj − U Y cj � 0 j ∈ J,
scj − U (1 − Y cj ) � 0 j ∈ J,
λcj , s

c
j � 0, j ∈ J,

x ∈ x, y ∈ Y, y ∈ {0, 1},

where scj are the slack variables associated with the inner problem
convexified inequalities, λcj are the associated Lagrange multipliers,
Y cj are the binary variables involved in the active set strategy. Check if
the linear independence condition is satisfied at the best upper bound
value obtained. If not, terminate. If satisfied, continue to Step 8.

Step 8: Solve the resulting MINLP problem to global optimality by the SMIN-
αBB or GMIN-αBB algorithms [1, 3]. If the optimum outer objective
function, z∗, is higher than the current lower bound, update zLO = z∗.

Step 9: If zUP − zLO � ε, stop. The global optimum is obtained. Else, go
to the following step for partitioning.



14 Z.H. GÜMÜŞ AND C.A. FLOUDAS

Figure 2. Algorithmic framework.

Step 10: Branch on a selected variable that participates in one of the nonlin-
ear terms, to partition the initial domain into two subdomains to be
considered at the next iteration. The branching strategy has a signi-
ficant effect on the performance of the algorithm. One of the seven
alternative branching strategies implemented within the αBB global
optimization algorithm, as described in [2, 4]. After branching, go
back to Step 2.
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5. Computational Studies

EXAMPLE 1. Consider the following BLPP [57]:

min
x,y

16x2 + 9y2

s.t.

− 4x + y � 0,

− x � 0

min
y
(x + y − 20)4

s.t.

4x + y − 50 � 0,

− y � 0.

This problem has two local optima, (7.2,12.8) and (11.25,5), where (11.25,5) is the
global solution. Note that all the inner level functions are convex, and therefore
no underestimation is necessary, since the inner problem KKT conditions are both
necessary and sufficient. Hence the upper and lower bounding problems are the
same. After replacing the inner level problem with its equivalent KKT optimal-
ity conditions, and using the active set strategy to rewrite the complementarity
conditions, the resulting is an MINLP problem:

min
x,y

16x2 + 9y2

s.t.

− 4x + y � 0,

− x � 0

4x + y − 50 + s1 = 0,

− y + s2 = 0

4(x + y − 20)3 + λ1 − λ2 � 0

− 4(x + y − 20)3 − λ1 + λ2 � 0

λj − UYj � 0, ∀j = 1, 2

sj + UYj � U, ∀j = 1, 2

λj , sj � 0, ∀j = 1, 2,

that is solved to its global optimum value by using SMIN-αBB [1, 3] in one overall
iteration to: (x, y) = (11.25, 5), F ∗ = 2250 in 4 αBB iterations and 2.210 CPUs
on an HP J2240 using one CPU.
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EXAMPLE 2. Consider the following BLPP [34]:

min
x,y

x3y1 + y2

s.t.

x � 1

− x � 0

min
y

−y2

xy1 � 10

y2
1 + xy2 � 1

− y2 � 0.

Note that at fixed x, the inner problem is convex, so no underestimation is
required for the inner problem. The KKT optimality conditions are necessary and
sufficient, and the upper and lower bounding problem formulations are the same.
The resulting transformed single level problem is nonlinear:

min
x,y

x3y1 + y2

s.t.

x � 1

− x � 0

xy1 + s1 = 10

y2
1 + xy2 + s2 � 1

− y2
1 − xy2 − s2 � −1

− y2 + s3 = 0

xλ1 + 2y1λ2 � 0

− xλ1 − 2y1λ2 � 0

− 1 + xλ2 − λ3 � 0

1 − xλ2 + λ3 � 0.

The deterministic global optimization algorithm, SMIN-αBB [1, 3] is employed to
locate the global optimum (x∗, y∗

1 , y
∗
2 ) = (1, 0,−1), in 4 αBB iterations and 3.38

CPUs.
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EXAMPLE 3. Consider the following simple fractional BLPP with linear con-
straints [22]:

min
x

− 8x1 − 4x2 + 4y1 − 40y2 − 4y3

s.t.

min
y

1 + x1 + x2 + 2y1 − y2 + y3

6 + 2x1 + y1 + y2 − 3y3

s.t.

− y1 + y2 + y3 + y4 = 1

2x1 − y1 + 2y2 − 1/2y3 + y5 = 1

2x2 + 2y1 − y2 − 1/2y3 + y6 = 1

x1, x2, yi � 0, ∀i = 1, . . . , 6.

The problem can be put into a more tractable form by rearranging the inner object-
ive fractional term by introducing new variables w1, w2 and substituting:

w1 = (1 + x1 + x2 + 2y1 − y2 + y3)/w2

w2 = 6 + 2x1 + y1 + y2 − 3y3,

where the resulting problem becomes:

min
x

−8x1 − 4x2 + 4y1 − 40y2 − 4y3

s.t.

min
y
w1

s.t.

− y1 + y2 + y3 + y4 = 1

2x1 − y1 + 2y2 − 1/2y3 + y5 = 1

2x2 + 2y1 − y2 − 1/2y3 + y6 = 1

1 + x1 + x2 + 2y1 − y2 − y3 − w1w2 = 0

6 + 2x1 + y1 + y2 − 3y3 − w1 = 0

x1, x2, yi � 0, ∀i = 1, . . . , 6.

Note that the w1w2 term is bilinear, hence the inner problem is a nonconvex BLPP.
The bilinear term can be underestimated by introducing a variable ω that replaces
every occurrence of w1w2 in the problem and satisfies the constraints that define
its convex envelope [2, 7]. The underestimating problem can be reformulated over
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the variable domain:

min
x

−8x1 − 4x2 + 4y1 − 40y2 − 4y3

s.t.

min
y
w1

s.t.

− y1 + y2 + y3 + y4 = 1

2x1 − y1 + 2y2 − 1/2y3 + y5 = 1

2x2 + 2y1 − y2 − 1/2y3 + y6 = 1

1 + x1 + x2 + 2y1 − y2 − y3 − w3 = 0

6 + 2x1 + y1 + y2 − 3y3 − w1 = 0

wL
1w2 + wL

2w1 − wL
1w

L
2 − w3 � 0

wU
1 w2 + wU

2 w1 − wU
1 w

U
2 − w3 � 0

− wU
1 w2 − wL

2 w1 + wU
1 w

L
2 + w3 � 0

− wL
1w2 − wU

2 w1 + wL
1 w

U
2 + w3 � 0

x1, x2, yi � 0, ∀i = 1, . . . , 6.

The resulting inner problem is convex. Replacing with its corresponding KKT
conditions that are necessary and sufficient, and introducing a binary variable Yj
for every inner constraint j , the transformed single level problem becomes:

min
x

−8x1 − 4x2 + 4y1 − 40y2 − 4y3

s.t.

− y1 + y2 + y3 + y4 = 1

2x1 − y1 + 2y2 − 1/2y3 + y5 = 1

2x2 + 2y1 − y2 − 1/2y3 + y6 = 1

1 + x1 + x2 + 2y1 − y2 − y3 − w3 = 0

6 + 2x1 + y1 + y2 − 3y3 − w1 = 0

wL
1w2 + wL

2w1 − wL
1w

L
2 − w3 + s1 = 0

wU
1 w2 + wU

2 w1 − wU
1 w

U
2 − w3 + s2 = 0

− wU
1 w2 − wL

2w1 + wU
1 w

L
2 + w3 + s3 = 0

− wL
1 w2 − wU

2 w1 + wL
1w

U
2 + w3 + s4 = 0

− yi + si+4 = 0, ∀i = 1, . . . , 6
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− µ1 − µ2 + 2µ3 + 2µ4 + µ5 − λ5 = 0

µ1 + 2µ2 − 2µ3 − µ4 + µ5 − λ6 = 0

µ1 − 1/2µ2 − 1/2µ3 − µ4 − 3µ5 − λ7 = 0

µ1 − λ8 = 0

µ2 − λ9 = 0

µ3 − λ10 = 0

1 + wL
2 λ1 + wU

2 λ2 − wL
2 λ3 − wU

2 λ
4 = 0

− µ4 − λ1 − λ2 + λ3 + λ4 = 0

− µ5 + wL
1 λ1 + wU

1 λ2 − wU
1 λ3 − wL

1 λ4 = 0

λj − UYj � 0, ∀j = 1, . . . , 10

sj + UYj � U, ∀j = 1, . . . , 10

λj , sj � 0, ∀j = 1, . . . , 10

x1, x2, yi � 0, ∀i = 1, . . . , 6,

where λ, µ are Lagrange multipliers and s are the slack variables. The bounds
wL

1 = 0, wU
1 = 1, wL

2 = 1.0, wU
2 = 8.0, wL

3 = 0, wU
3 = 2.75 are estimated from

the solution of:

min
x,y

wk, −wk
s.t.

− y1 + y2 + y3 + y4 = 1

2x1 − y1 + 2y2 − 1/2y3 + y5 = 1

2x2 + 2y1 − y2 − 1/2y3 + y6 = 1

1 + x1 + x2 + 2y1 − y2 − y3 − w3 = 0

6 + 2x1 + y1 + y2 − 3y3 − w1 = 0, ∀k = 1, . . . , 3,

taking 1 αBB iteration in around 0.030 CPUs per bound. The MILP problem is
solved to global optimality at (x∗

1 , x
∗
2 , y

∗
1 , y

∗
2 , y

∗
3 , y

∗
4 , y

∗
5 , y

∗
6 , w1, w2, w3) =

(0.0, 0.9, 0.0, 0.6, 0.4, 0.0, 0.0, 0.0, 0.1125, 5.4, 0.9), FLB = −29.2, using
SMIN-αBB [3, 1] in 1 iteration and 0.340 CPUs. Note that the problem is linear
and thus can also be solved using a linear optimization package.

The upper bounding problem is obtained by replacing the inner level problem
with its KKT optimality conditions without underestimation:
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min
x

−8x1 − 4x2 + 4y1 − 40y2 − 4y3

s.t.

− y1 + y2 + y3 + y4 = 1

2x1 − y1 + 2y2 − 1/2y3 + y5 = 1

2x2 + 2y1 − y2 − 1/2y3 + y6 = 1

1 + x1 + x2 + 2y1 − y2 − y3 − w1w2 = 0

6 + 2x1 + y1 + y2 − 3y3 − w1 = 0

− yi + si = 0, ∀i = 1, . . . , 6

− µ1 − µ2 + 2µ3 + 2µ4 + µ5 − λ1 = 0

µ1 + 2µ2 − 2µ3 − µ4 + µ5 − λ2 = 0

µ1 − 1/2µ2 − 1/2µ3 − µ4 − 3µ5 − λ3 = 0

µ1 − λ4 = 0

µ2 − λ5 = 0

µ3 − λ6 = 0

1 − w2µ4 = 0

− w1µ4 − µ5 = 0

λj − UYj � 0, ∀j = 1, . . . , 6

sj + UYj � U, ∀j = 1, . . . , 6

λj , sj � 0, ∀j = 1, . . . , 6

x1, x2, yi � 0, ∀i = 1, . . . , 6.

Solving the MINLP to local optimality using MINOPT [56] resulted in FUB =
−29.2 = FLB = F ∗, and the algorithm terminates.

EXAMPLE 4. Consider the following problem with constraints only on the outer
problem [54]:

min
x
(x − 3)2 + (y − 2)2

s.t.

− 2x + y − 1 � 0

x − 2y + 2 � 0

x + 2y − 14 � 0

0 � x � 8

min
y
(y − 5)2
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Note that the inner problem is quadratic in y, thus no underestimation is needed for
the inner problem. Furthermore, since there are no inner constraints, after the KKT
transformation, the resulting problem is a quadratic optimization problem, without
integer variables, and can thus be solved to global optimality by even using a local
optimization method. The problem is optimal at (3,5).

EXAMPLE 5. Consider the following example problem, with the inner problem
taken from [33] at t∗3 = 0.565:

min
t2
t2

s.t.

min
t1,t4

−t1 + 0.5864t0.67
1

s.t.

0.0332333t−1
4 + 2t−0.71

2 t−1
4 + 0.0332333t−1.3

2 � 1

ti � 10, ∀i ∈ I = {1, 2, 4}
− ti � 0.1 ∀i ∈ I = {1, 2, 4}.

The problem constraints are nonlinear and nonconvex. However, all the nonlin-
earities are in terms of powers and multiplications. This special structure of the
problem can be exploited by redefining the terms as: t1 = exp(t ′1), t2 = exp(t ′2),
t4 = exp(t ′4) and substituting the exponential terms into the formulation:

min
t ′2

exp(t ′2)

s.t.

min
t ′1,t ′4

− exp(t ′1)+ 0.5864 exp(0.67t ′1)

s.t.

0.0332333 exp(t ′4)+ 0.1 exp(t ′1) � 1

4 exp(t ′2 − t ′4)+ 2 exp(−0.71t ′2 − t ′4)+ 0.0332333 exp(−1.3t ′2) � 1

t ′i � ln(10), ∀i ∈ I = {1, 2, 4}
− t ′i � − ln(0.1) ∀i ∈ I = {1, 2, 4}.

Note that the resulting BLPP involves nonlinearities in the exponentials, that are
either convex or concave. For the lower bounding problem, the univariate concave
term − exp(t ′1) is underestimated as: −1.1052 −2224.784(t ′1 −0.1). After the KKT
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transformation, and active set strategy, the lower bounding problem becomes:

min
t ′2

exp(t ′2)

s.t.

0.0332333 exp(t ′4)+ 0.1 exp(t ′1)+ s1 � 1

− 0.0332333 exp(t ′4)− 0.1 exp(t ′1)− s1 � −1

4 exp(x)+ 2 exp(y)+ 0.0332333 exp(−1.3t2)+ s2 � 1

− exp(x)− 2 exp(y)− 0.0332333 exp(−1.3t2)− s2 � −1

t ′1 + s3 = ln(10)

− t1′ + s4 = − ln(0.1)

t ′4 + s5 = ln(10)

− t ′4 + s6 = − ln(0.1)

− 2224.784 + 0.1 exp(t ′1)λ1 + λ3 − λ4 = 0

0.0332333 exp(t ′4)λ1 − 4 exp(t ′2 − t ′4)λ2 − 2 exp(−0.71t ′2 − t ′4)λ2

+ λ5 − λ6 = 0

x = t ′2 − t ′4
y = −0.71t ′2 − t ′4
t ′2 � ln(10)

− t ′2 � − ln(0.1).

The resulting MINLP is solved to global optimality by SMIN-αBB [1, 3] with
the objective function value of −2.182606, at (t ′1, t

′
2, t

′
4) = (1.90, 0.78, 2.30) in

1 iteration and 0.110 CPUs. The upper bounding problem is formulated without
underestimation:

min
t ′2

exp(t ′2)

s.t.

0.0332333 exp(t ′4)+ 0.1 exp(t ′1)+ s1 = 1

4 exp(t ′2 − t ′4)+ 2 exp(−0.71t ′2 − t ′4)+ 0.0332333 exp(−1.3t ′2)+ s2 = 1

t ′1 + s3 = ln(10)

− t ′1 + s4 = − ln(0.1)

t ′4 + s5 = ln(10)

− t ′4 + s6 = − ln(0.1)

− exp(t ′1)+ 0.5864 ∗ 0.67 exp(0.67t ′1)+ 0.1 exp(t − 1′)λ1 + λ3 − λ4 = 0

− 2 exp(−0.71t ′2 − t ′4)λ3 + λ5 − λ6 = 0

t2′ � ln(10)

− t2′ � − ln(0.1).



GLOBAL OPTIMIZATION OF NONLINEAR BILEVEL PROGRAMMING PROBLEMS 23

Solving with MINOPT [56], the upper bound of the objective function −2.182606
is obtained in 0.47 CPUs, that is equal to the lower bound, and thus the optimal
solution.

6. Parameter Estimation Problems

In many science and engineering areas, estimation of parameters is a crucial step
for the development of mathematical models that can accurately predict a physical
phenomena. The parameters are determined from the available experimental data
using statistical methods, and, in general, the models are complex and nonlinear.
Statistical methods treat the experimental data measurements (the independent
variables) as free of error, and only consider the error in adjustable parameters (the
dependent variables). However, the independent variables contain errors associated
with measurements as well. A statistical method extensively used in literature for
parameter estimation where error in all the variables is treated instead of only the
dependent variables is the maximum likelihood estimation method. The systems
considered are described by an algebraic set of equations of the form:

f(θ , z) = 0,

where θ is the vector of p unknown parameters, z is the vector of n measurement
variables and f is the the system of l algebraic functions. The measured variables
are the sum of the unknown true values ζm and the additive error, em at the data
point m:

zm = ζm + em.

Obviously, em = zm−ζm. Assuming that the error is normally distributed with zero
mean and the covariance matrix is known, the parameters θ are estimated from the
solution of the following optimization problem:

ψ = min
θ̂ ,ẑ

M∑

m=1

(ẑm − zm)T V−1
m (ẑm − zm)

s.t.

f (ẑm, θ̂ ) = 0, m = 1, . . . ,M.

Note that the true values of the experimental data, ζm are not known, however,
can be approximated from the optimization as fitted data variables ẑm. Further,
assuming that the covariance matrix is same in each experiment and diagonal, the
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problem becomes:

ψ = min
θ̂ ,ẑ

M∑

m=1

n∑

i=1

(ẑm,i − zm,i)
2

σ 2
i

s.t.

f(ẑm, θ̂) = 0, m = 1, . . . ,M,

where σi is the standard deviation of ith variable in all experiments. This is a popu-
lar formulation of the maximum likelihood approach, the Error-in-Variables, EVM
model. Notice that the objective function is convex. However, since the minimiza-
tion is over both the parameters and data variables, the model equations introduce
nonconvexities even for simplest cases. Solution methods for this problem include
simultaneous parameter estimation and data reconciliation, two-stage nonlinear
EVM and nested nonlinear EVM [42] and global optimization methods [29]. The
nested nonlinear EVM has a bilevel formulation, of the form:

ψ1 = min
θ̂

M∑

m=1

n∑

i=1

(ẑm,i − zm,i)
2

σ 2
i

s.t.

ψ2 = min
ẑ

M∑

m=1

n∑

i=1

(ẑm,i − zm,i)
2

σ 2
i

s.t.

f (ẑm,i, θ̂ ) = 0, m = 1, . . . ,M i = 1, . . . , N.

Employing the nested nonlinear EVM formulation, several example problems
are solved below.

EXAMPLE 1: Kowalik Problem.Consider the model equation [29]:

ẑm,1 = θ1z
2
m,2 + zm,2θ2θ1

z2
m,2 + zm,2θ3 + θ4

.
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In this problem, it is assumed that only z1 contains error, hence zm,2 is a constant.
The resulting BLPP is as follows:

ψ1 = min
θ̂

11∑

m=1

(ẑm,1 − zm,1)
2

s.t.

ψ2 = min
z

11∑

m=1

(ẑm,1 − zm,1)
2

s.t.

ẑm,1z
2
m,2 + ẑm,1zm,2θ3 + ẑm,1θ4 − θ1z

2
m,2 − zm,2θ2θ1 = 0,

where the model equation is rearranged into a simpler form. Notice that the inner
problem is convex at constant θ , hence no underestimation is needed before the
inner problem is replaced with its KKT optimality conditions, and the upper and
lower bounding problems have the same formulation:

ψ1 = min
θ̂ ,ẑm,1

11∑

m=1

(ẑm,1 − zm,1)
2

s.t.

ẑm,1z
2
m,2 + ẑm,1zm,2θ3 + ẑm,1θ4 − θ1z

2
m,2 − zm,2θ2θ1 = 0

2(ẑm,1 − zm,1)+ z2
m,2µ1 + zm,2θ3µm + θ4µm − λm,1 + λm,2 = 0

− ẑm,1 + ẑLm,1 + sm,1 = 0, m = 1, . . . , 11

ẑm,1 − ẑUm,1 + sm,2 = 0, m = 1, . . . , 11

λm,j − UYm,j � 0, m = 1, . . . , 11, j = 1, 2

sm,j + UYm,j � U, m = 1, . . . , 11, j = 1, 2

λm,j � 0, sm,j � 0, m = 1, . . . , 11, j = 1, 2,

where U is a large positive number, µm is the Lagrange multiplier of equality
constraint m, λm,j is the Lagrange multiplier of the inequality constraint (m, j),
and Ym,j is the binary variable associated with each active constraint (m, j). The
parameter bounds are [−0.2892, 0.2893]. Setting the absolute convergence to 10−4

and solving the resulting nonconvex single level MINLP optimization problem to
global optimality using the SMIN-αBB [3, 1], the objective is F ∗ = 3.0747x10−4

and the parameters are (θ∗
1 , θ

∗
2 , θ

∗
3 , θ

∗
4 ) = (0.1928, 0.1909, 0.1231, 0.1358). The

data and fitted values are presented in Table 1 in the Appendix.
In the formulation of parameter estimation problems, binary variables are intro-

duced to define the simple bounds on the variables explicity for the KKT optimality
conditions. However, this creates a sigificant increase in the size of the problem,



26 Z.H. GÜMÜŞ AND C.A. FLOUDAS

as two binary variables are introduced for every fitted variable, for every lower and
upper bound, in addition to the associated Lagrange multiplier and slack variable.
Notice that when these bounds are not active, the binary variables and the Lagrange
multipliers take the value of zero, and thus have no constraining effects on the inner
problem. Therefore, instead of defining the simple variable bounds explicitly, the
problem can be solved without these constraints defined at the inner problem, and
the resulting problem solved to global optimality. If a variable is at its lower or
upper bound, then the constraint that defines this boundary can be included into
the explicit formulation and solved again to global optimality. The new formula-
tion includes a binary variable for the simple bound constraint and the associated
KKT condition constraints. This can result in significant decreases in run time for
the solution of parameter estimation problems. For the example solved above, the
problem becomes an NLP when simple bounds are excluded, and the optimal value
is obtained at the first global run using αBB [2, 4, 5, 11] in 37.970 CPUs and 422
iterations. No fitted variable is at its bound at this solution, so no new variables are
introduced and the iteration terminates.

EXAMPLE 2: Linear Fit [29]. Consider the problem of linear fitting data to a
straight line with the model equation:

ẑm,2 = θ1 + θ2 ẑm,1.

The BLPP formulation is of the form:

ψ2 = min
θ̂

10∑

m=1

2∑

i=1

(ẑm,i − zm,i)
2

s.t.

ψ2 = min
z

10∑

m=1

2∑

i=1

(ẑm,i − zm,i)
2

s.t.

− ẑm,2 + θ1 + θ2 ẑm,1 = 0

− ẑm,1 + ẑLm,1 � 0

ẑm,1 − ẑUm,1 � 0

− ẑm,2 + ẑLm,2 � 0

ẑm,2 − ẑUm,2 � 0.

Since the inner problem is convex at constant θ , no underestimation is needed
before it is replaced with its KKT optimality conditions and the upper and lower
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bounding problems have the same formulation:

ψ2 = min
θ̂

10∑

m=1

2∑

i=1

(ẑm,i − zm,i)
2

s.t.

2(ẑm,1 − zm,1)+ θ2µm − λm,1 + λm,2 = 0

2(ẑm,2 − zm,2)− µm − λm,3 + λm,4 = 0

− ẑm,2 + θ1 + θ2 ẑm,1 = 0

− ẑm,1 + ẑLm,1 + sm,1 = 0

ẑm,1 − ẑUm,1 + sm,2 = 0

− ẑm,2 + ẑLm,2 + sm,3 = 0

ẑm,2 − ẑUm,2 + sm,4 = 0

λm,j � 0, sm,j � 0, m = 1, . . . , 11, j = 1, . . . , 4

λm,j − UYm,j � 0, m = 1, . . . , 11, j = 1, . . . , 4

sm,j + UYm,j � U, m = 1, . . . , 11, j = 1, . . . , 4

λm,j , sm,j � 0, m = 1, . . . , 11, j = 1, . . . , 4.

Solving the resulting nonconvex single level MINLP for zm ± 0.5 to global optim-
ality using the SMIN-αBB [1, 3] the objective is F ∗ = 0.61857 and parameters
θ1 = 5.7840 and θ2 = −0.54556, in 28 iterations and 614.500 CPUs. Excluding
the explicit formulation of the simple upper and lower bounding constraints on the
variables for the inner problem, and solving the resulting NLP to global optimality
using αBB [2, 4, 5, 11], the same objective is obtained in 1.98 CPUs and 28 αBB
iterations. Since no variable is at its upper or lower bound, no additional variables
or constraints are introduced, and thus the global optimum is obtained. The data
and fitted values are presented in Table 2 in the Appendix.

7. Conclusions

A global optimization algorithm for the solution of the general nonlinear bilevel
programming problem that involves twice differentiable functions is presented.
The approach is based on a relaxation of the feasible region and branch and bound
framework. The relaxation is accomplished by an enlargement of the feasible solu-
tion space of the bilevel problem. The resulting relaxed optimization problem is
solved to global optimality by using the deterministic global optimization algorithm,
αBB [2, 4, 5, 11] or SMIN-αBB or GMIN-αBB [1, 3] when integer variables
are involved. Consequently, a lower bound is obtained. An upper bound to the
global minimum is obtained by transforming the original problem into a single
level one without the relaxation and solving for local optimality. After upper and
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lower bounds are obtained to the global solution, the initial region of the problem
variables is partitioned into smaller regions by using one of the branching rules
that are developed within the deterministic global optimization algorithm, αBB.
Several examples of varying features are presented to show the capability of the
approach in solving various BLPP problems.
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Appendix

Table 1. Kowalik Problem

Data Fitted Values

zµ,1 1/zµ,2 ẑµ,1

0.1957 0.25 0.1944

0.1947 0.5 0.1928

0.1735 1 0.1824

0.1600 2 0.1489

0.0844 4 0.0928

0.0627 6 0.0624

0.0456 8 0.0457

0.0342 10 0.0355

0.0323 12 0.0288

0.0235 14 0.0241

0.0246 16 0.0207

Table 2. Linear Fit Problem

Data Linear Fit

zm,1 zm,2 ẑm,1 ẑm,2

0.0 5.9 −0.049 5.811

0.9 5.4 0.855 5.318

1.8 4.4 1.969 4.710

2.6 4.6 2.501 4.419

3.3 3.5 3.503 3.873

4.4 3.7 4.267 3.456

5.2 2.8 5.262 2.913

6.1 2.8 5.955 2.535

6.5 2.4 6.432 2.275

7.4 1.5 7.504 1.690
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